Deep Image Description Rui-Wei Zhao rw.du.zhao@gmail.com ## Outline - Generating descriptions for the whole images^{{Vinyals2014,} Karpathy2014} - Generating descriptions for the regional images^{Karpathy2014} # Generating descriptions for the whole images "girl in pink dress is jumping in air." "black and white dog jumps over bar." "young girl in pink shirt is swinging on swing." "man in blue wetsuit is surfing on wave." ""little girl is eating piece of cake." "baseball player is throwing ball in game." "woman is holding bunch of bananas." "black cat is sitting on top of suitcase." ### Predictive Model $$f(s \mid v; \Theta) = p(s_1 \mid v, s_0) p(s_2 \mid v, s_0, s_1) \cdots p(s_T \mid v, s_0, ..., s_{T-1})$$ #### hat RNN W_{oh} straw W_{hx} W_{hh} straw W_{hi} **START** $CNN_{\theta c}$ $b_v = W_{hi}[CNN_{\theta_c}(I)]$ CNN $h_t = f(W_{hx}x_t + W_{hh}h_{t-1} + b_h + 1(t = 1) \odot b_v)$ X $y_t = softmax(W_{oh}h_t + b_o).$ # LSTM-RNN g_o 0 C**G**f **g**i g_{x} X 8 # LSTM-RNN #### LSTM-RNN • $i_t = g_{i,t} \otimes g_{x,t}$ • $f_t = g_{f,t} \otimes c_{t-1}$ • $c_t = i_t + f_t$ $\sigma(W_{gox}x_t + W_{goo}o_{t-1})$ $o_t = g_{o,t} \circ c_t$ 0 g_0 **G**f C $\sigma(W_{gix}x_t + W_{gio}o_{t-1})$ $\sigma(W_{gfx}x_t+W_{gfo}o_{t-1})$ *gi* g_{x} $tanh(W_{ix}x_t+W_{io}o_{t-1})$ gate X 10 ## Toy Experiment - Training set (407) - dog & frisbee: 59 - man & ride: 324 - kiss: 24 1674612291_7154c5ab61.jpg 4 16 5 Inherit previous memory Acknowledge previous word Update current memory Predict next word Until all memory fades out a dog jumps to catch a frisbee. c tanh x, h'_o g_o g_i g_f a dog jumps to catch a frisbee . 1 a dog jumps a dog jumps to catch a frisbee . 2 20 7 catch a frisbee a dog is jumping to catch a frisbee 1674612291_7154c5ab61.jpg₂₁ 2945036454_280fa5b29f.jpg catch a frisbee g_o h_f g_f c g_i tanh x, h'_o IMAGE a dog is jumping to catch a frisbee g_o g_f c g_i tanh x, h'_o a dog is jumping to a dog is jumping to 2 24 2 catch a frisbee -jumps g_o g_f c g_i tanh a dog x, h'_o dog a dog is jumping to catch a frisbee. g_o h_f g_f c g_i tanh x, h'_o 3 25 3 a dog is jumping to 3 26 4 catch a frisbee g_o h_f g_f c g_i tanh a dog jumps x, h'_o jumps a dog is jumping to 4 27 5 a dog is jumping to 5 28 6 a dog is jumping to catch a frisbee. g_o g_f c g_i tanh a dog is jumping to catch x, h'_o 6 29 7 a dog is jumping to catch a frisbee. frisbee g_o h_f g_f ctanh a dog is jumping to catch a x, h'_o 7 30 8 catch a frisbee g_o g_f c g_i tanh a dog jumps to catch a frisbe x, h'_o a dog is jumping to catch a frisbee a dog is jumping to catch a frisbee. 1626754053_81126b67b6.jpg₃₂ 2945036454_280fa5b29f.jpg g_o g_i tanh x, h'_o catch a frisbee. g_f 33 g_o g_i tanh x, h'_o catch a frisbee. a dog is jumping to catch a frisbee. 34 g_f catch a frisbee. a dog is jumping to catch a frisbee. catch a frisbee. g_o g_f g_i tanh a black x, h'_o a dog is jumping to catch a frisbee. catch a frisbee. g_o g_f c g_i tanh a black dog x, h'_o a dog is jumping to 4 37 3 catch a frisbee. jumping g_o g_f g_i tanh a black dog is x, h'_o a dog is jumping to catch a frisbee. 5 38 4 catch a frisbee. g_o g_f c g_i tanh a black dog is jumping x, h'_o jumping a dog is jumping to <u>catch a frisbee .</u> catch a frisbee. a dog is jumping to catch a frisbee. catch a frisbee. g_i tanh a black dog is jumping to cat x, h'_o a dog is jumping to 8 41 7 catch a frisbee. a dog is jumping to catch a frisbee. catch a frisbee. g_f tanh a black dog is jumping to catch a x, h'_o a dog is jumping to catch a frisbee. 10 #### Why all dogs end with "frisbee"? Count last word in training sentences with "dog" and "frisbee": | 86 frisbee | 6 yard | 4 it | 2 other | |------------|--------------|----------|-------------| | 30 mouth | 6 disc | 4 ground | 2 mouths | | 15 snow | 6 air | 4 fence | 2 man | | 15 grass | 5 watches | 4 beach | 2 legs | | 11 field | 5 midair | 3 road | 2 hand | | 11 dog | 5 background | 3 object | 2 dogs | | 8 toy | 4 watch | 3 boat | 1 underfoot | | 7 water | 4 park | 3 ball | 1 | a man in a blue shirt is a man in a blue shirt is riding a bike on a dirt track. riding a bike on a ramp 2891617125_f939f604c7.jpg 45 3640422448_a0f42e4559.jpg 46 g_f a man in a blue shirt is a man in a blue shirt is riding a bike on a dirt track. riding a bike on a ramp. g_o g_f g_i tanh x, h'_o g_o h_f g_f g_i tanh x, h'_o a man in a blue shirt is riding a bike on a dirt track. riding a bike on a ramp. g_o h_f g_f g_i tanh x, h'_o g_o h_f g_f g_i tanh x, h'_o a man in a blue shirt is riding a bike on a dirt track. riding a bike on a ramp. g_o g_f g_i tanh x, h'_o g_o h_f g_f g_i tanh x, h'_o riding a bike on a dirt track. riding a bike on a ramp. g_o g_f g_i tanh a man in x, h'_o g_o g_f g_i tanh x, h'_o riding a bike on a dirt track. riding a bike on a ramp. g_o h_f g_f g_i tanh a man in a x, h'_o g_o h_f g_f g_i tanh x, h'_o riding a bike on a dirt track. riding a bike on a ramp. g_o g_f tanh a man in a blue x, h'_o g_o h_f g_f g_i tanh a man in a blue x, h'_o riding a bike on a dirt track. riding a bike on a ramp. g_o g_f tanh a man in a blue shirt x, h'_o a man in a blue shirt is a man in a blue shirt is riding a bike on a dirt track. riding a bike on a ramp riding g_o g_f tanh a man in a blue shirt is x, h'_o g_o h_f g_f g_i tanh a man in a blue shirt is x, h'_o riding a bike on a dirt track. riding a bike on a ramp g_o g_f tanh a man in a blue shirt is ridin x, h'_o riding g_o h_f g_f g_i tanh a man in a blue shirt is riding x, h'_o riding g_o h_f g_i tanh a man in a blue shirt is riding x, h'_o riding a bike on a dirt track. riding a bike on a ramp. g_o g_f tanh a man in a blue shirt is riding a x, h'_o a man in a blue shirt is a man in a blue shirt is riding a bike on a dirt track. riding a bike on a ramp. g_f tanh a man in a blue shirt is riding a b x, h'_o g_o g_i tanh a man in a blue shirt is riding a bi x, h'_o riding a bike on a dirt track. riding a bike on a ramp. g_f tanh a man in a blue shirt is riding a bike x, h'_o g_o h_f g_i tanh a man in a blue shirt is riding a bik x, h'_o riding a bike on a dirt track. riding a bike on a ramp. g_f tanh a man in a blue shirt is riding a bike on x, h'_o g_o h_f g_i tanh a man in a blue shirt is riding a bike of x, h'_o # Generating descriptions for the regional images 1 Dataset of images and sentence descriptions training image "A Tabby cat is leaning on a wooden table, with one paw on a laser mouse and the other on a black laptop" 2 Inferred correspondences training image "Tabby cat is leaning" "laser mouse" "paw" "black laptop" "wooden table" Generative model test image "office telephone" "shiny laptop" ►"Tabby cat is sleeping" "wooden office desk" "messy pile of documents" Alignment is here ## Alignment model <u>Algorithm</u> #### <u>Algorithm</u> image embedding word embedding $$v = W_m[CNN_{\theta_c}(I_b)] + b_m$$ $$x_{t} = W_{w} \mathbb{I}_{t}$$ $$e_{t} = f(W_{e}x_{t} + b_{e})$$ $$h_{t}^{f} = f(e_{t} + W_{f}h_{t-1}^{f} + b_{f})$$ $$h_{t}^{b} = f(e_{t} + W_{b}h_{t+1}^{b} + b_{b})$$ $$s_{t} = f(W_{d}(h_{t}^{f} + h_{t}^{b}) + b_{d}).$$ Algorithm $$v = W_m[CNN_{\theta_c}(I_b)] + b_m$$ A ranking model that makes similarity scores of matching pairs higher than those of mis-matches. #### <u>Algorithm</u> Encourage neighbour words to align to the same region. image embedding $$v = W_m[CNN_{\theta_c}(I_b)] + b_m$$ $$x_{t} = W_{w} \mathbb{I}_{t}$$ $$e_{t} = f(W_{e} x_{t} + b_{e})$$ $$h_{t}^{f} = f(e_{t} + W_{f} h_{t-1}^{f} + b_{f})$$ $$h_{t}^{b} = f(e_{t} + W_{b} h_{t+1}^{b} + b_{b})$$ $$s_{t} = f(W_{d} (h_{t}^{f} + h_{t}^{b}) + b_{d}).$$ word embedding $$\mathcal{C}(\theta) = \sum_{k} \Big[\underbrace{\sum_{l} max(0, S_{kl} - S_{kk} + 1)}_{\text{rank images}} \\ + \underbrace{\sum_{l} max(0, S_{lk} - S_{kk} + 1)}_{\text{rank sentences}} \Big].$$ alignment objective $$\begin{split} E(\mathbf{a}) &= \sum_{j=1...N} \psi_j^U(a_j) + \sum_{j=1...N-1} \psi_j^B(a_j, a_{j+1}) \\ \psi_j^U(a_j = t) &= v_i^T s_t \\ \psi_j^B(a_j, a_{j+1}) &= \beta \mathbb{1}[a_j = a_{j+1}]. \end{split} \qquad \begin{array}{c} \mathsf{MRF in} \\ \mathsf{decoding} \\ \end{split}$$ down street helmet riding down street police officer man man in red shirt motorcycles group group of people motorcycle dirt bike two motorcycles red man yellow young man group kitchen bottles of wine wine bottles glasses bottle table with wine glasses woman people glass vases these different types - chocolate cake - glass of wine ## Evaluation - Alignment Image annotation Image search test sentence: w1 w2 w3 ... wn ## Evaluation - Alignment | | Image Annotation | | | | Image Search | | | | | | | |-----------------------------------|------------------|------|------|------------|--------------|-------------|------|-------|--|--|--| | Model | R@1 | R@5 | R@10 | Med r | R@1 | R@5 | R@10 | Med r | | | | | Flickr8K | | | | | | | | | | | | | DeViSE (Frome et al. [10]) | 4.5 | 18.1 | 29.2 | 26 | 6.7 | 21.9 | 32.7 | 25 | | | | | SDT-RNN (Socher et al. [42]) | 9.6 | 29.8 | 41.1 | 16 | 8.9 | 29.8 | 41.1 | 16 | | | | | Kiros et al. [19] | 13.5 | 36.2 | 45.7 | 13 | 10.4 | 31.0 | 43.7 | 14 | | | | | Mao et al. [31] | 14.5 | 37.2 | 48.5 | 11 | 11.5 | 31.0 | 42.4 | 15 | | | | | DeFrag (Karpathy et al. [18]) | 12.6 | 32.9 | 44.0 | 14 | 9.7 | 29.6 | 42.5 | 15 | | | | | Our implementation of DeFrag [18] | 13.8 | 35.8 | 48.2 | 10.4 | 9.5 | 28.2 | 40.3 | 15.6 | | | | | Our model: DepTree edges | 14.8 | 37.9 | 50.0 | 9.4 | 11.6 | 31.4 | 43.8 | 13.2 | | | | | Our model: BRNN | 16.5 | 40.6 | 54.2 | 7.6 | 11.8 | 32.1 | 44.7 | 12.4 | | | | | Flickr30K | | | | | | | | | | | | | DeViSE (Frome et al. [10]) | 4.5 | 18.1 | 29.2 | 26 | 6.7 | 21.9 | 32.7 | 25 | | | | | SDT-RNN (Socher et al. [42]) | 9.6 | 29.8 | 41.1 | 16 | 8.9 | 29.8 | 41.1 | 16 | | | | | Kiros et al. [19] | 14.8 | 39.2 | 50.9 | 10 | 11.8 | 34.0 | 46.3 | 13 | | | | | Mao et al. [31] | 18.4 | 40.2 | 50.9 | 10 | 12.6 | 31.2 | 41.5 | 16 | | | | | DeFrag (Karpathy et al. [18]) | 14.2 | 37.7 | 51.3 | 10 | 10.2 | 30.8 | 44.2 | 14 | | | | | Our implementation of DeFrag [18] | 19.2 | 44.5 | 58.0 | 6.0 | 12.9 | 35.4 | 47.5 | 10.8 | | | | | Our model: DepTree edges | 20.0 | 46.6 | 59.4 | 5.4 | 15.0 | 36.5 | 48.2 | 10.4 | | | | | Our model: BRNN | 22.2 | 48.2 | 61.4 | 4.8 | 15.2 | 37.7 | 50.5 | 9.2 | | | | | | MSCOCO | | | | | | | | | | | | Our model: 1K test images | 29.4 | 62.0 | 75.9 | 2.5 | 20.9 | 52.8 | 69.2 | 4.0 | | | | | Our model: 5K test images | 11.8 | 32.5 | 45.4 | 12.2 | 8.9 | 24.9 | 36.3 | 19.5 | | | | ### Evaluation - Translation | | Flickr8K | | | Flickr30K | | | | MSCOCO | | | | | |--------------------------------------|----------|------|---------|-----------|-------|------|------|--------|-------|------|------|------| | Method of generating text | PPL | B-1 | B-2 | B-3 | PPL | B-1 | B-2 | B-3 | PPL | B-1 | B-2 | B-3 | | 4 sentence references | | | | | | | | | | | | | | Human agreement | - | 0.63 | 0.40 | 0.21 | _ | 0.69 | 0.45 | 0.23 | _ | 0.63 | 0.41 | 0.22 | | Ranking: Nearest Neighbor | - | 0.29 | 0.11 | 0.03 | - | 0.27 | 0.08 | 0.02 | - | 0.32 | 0.11 | 0.03 | | Generating: RNN | _ | 0.42 | 0.19 | 0.06 | - | 0.45 | 0.20 | 0.06 | _ | 0.50 | 0.25 | 0.12 | | Generating: RNN (OxfordNet CNN [40]) | _ | 0.49 | 0.28 | 0.11 | - | 0.49 | 0.28 | 0.12 | _ | 0.54 | 0.34 | 0.16 | | | | 5 | sentenc | e refere | ences | | | | | | | | | Generating: RNN | - | 0.45 | 0.21 | 0.09 | _ | 0.47 | 0.21 | 0.09 | - | 0.53 | 0.28 | 0.15 | | Mao et al. [31] | 24.39 | 0.58 | 0.28 | 0.23 | 35.11 | 0.55 | 0.24 | 0.20 | _ | - | - | - | | Generating: RNN (OxfordNet CNN [40]) | 22.66 | 0.51 | 0.31 | 0.12 | 21.20 | 0.50 | 0.30 | 0.15 | 19.64 | 0.57 | 0.37 | 0.19 | | | Flickr8K | | | | | Flicki | :30K | | MSCOCO | | | | |---------------------------|----------|------|------|------|-------|--------|------|------|--------|------|------|------| | Method of generating text | PPL | B-1 | B-2 | B-3 | PPL | B-1 | B-2 | B-3 | PPL | B-1 | B-2 | B-3 | | Vanilla RNN | 22.66 | 0.51 | 0.31 | 0.12 | 21.20 | 0.50 | 0.30 | 0.15 | 19.64 | 0.57 | 0.37 | 0.19 | | LSTM | 15.47 | 0.53 | 0.34 | 0.17 | 18.92 | 0.52 | 0.32 | 0.15 | 13.96 | 0.60 | 0.40 | 0.21 | | Method of generating text | B-1 | B-2 | B-3 | |--------------------------------|------|------|------| | Human agreement | 0.54 | 0.33 | 0.16 | | Ranking: Nearest Neighbor | 0.14 | 0.03 | 0.07 | | Generating: Full frame model | 0.12 | 0.03 | 0.01 | | Generating: Region level model | 0.17 | 0.05 | 0.01 | #### Reference - Karpathy, A. & Fei-Fei, L., 2014. Deep Visual-Semantic Alignments for Generating Image Descriptions. arXiv.org, cs.CV. - Vinyals, O. et al., 2014. Show and Tell: A Neural Image Caption Generator. arXiv.org, cs.CV.