

Deep Image Description

Rui-Wei Zhao rw.du.zhao@gmail.com

Outline

- Generating descriptions for the whole images^{{Vinyals2014,} Karpathy2014}
- Generating descriptions for the regional images^{Karpathy2014}

Generating descriptions for the whole images

"girl in pink dress is jumping in air."

"black and white dog jumps over bar."

"young girl in pink shirt is swinging on swing."

"man in blue wetsuit is surfing on wave."

""little girl is eating piece of cake."

"baseball player is throwing ball in game."

"woman is holding bunch of bananas."

"black cat is sitting on top of suitcase."

Predictive Model

$$f(s \mid v; \Theta) = p(s_1 \mid v, s_0) p(s_2 \mid v, s_0, s_1) \cdots p(s_T \mid v, s_0, ..., s_{T-1})$$

hat RNN W_{oh} straw W_{hx} W_{hh} straw W_{hi} **START** $CNN_{\theta c}$ $b_v = W_{hi}[CNN_{\theta_c}(I)]$ CNN $h_t = f(W_{hx}x_t + W_{hh}h_{t-1} + b_h + 1(t = 1) \odot b_v)$ X $y_t = softmax(W_{oh}h_t + b_o).$

LSTM-RNN g_o 0 C**G**f **g**i g_{x} X 8

LSTM-RNN

LSTM-RNN • $i_t = g_{i,t} \otimes g_{x,t}$ • $f_t = g_{f,t} \otimes c_{t-1}$ • $c_t = i_t + f_t$ $\sigma(W_{gox}x_t + W_{goo}o_{t-1})$ $o_t = g_{o,t} \circ c_t$ 0 g_0 **G**f C $\sigma(W_{gix}x_t + W_{gio}o_{t-1})$ $\sigma(W_{gfx}x_t+W_{gfo}o_{t-1})$ *gi* g_{x} $tanh(W_{ix}x_t+W_{io}o_{t-1})$ gate X 10

Toy Experiment

- Training set (407)
 - dog & frisbee: 59
 - man & ride: 324
 - kiss: 24

1674612291_7154c5ab61.jpg

4 16 5

Inherit previous memory
Acknowledge previous word
Update current memory
Predict next word
Until all memory fades out

a dog jumps

to catch a frisbee.

c

tanh

 x, h'_o

 g_o

 g_i

 g_f

a dog jumps to catch a frisbee .

1

a dog jumps

a dog jumps to catch a frisbee .

2 20 7

catch a frisbee

a dog is jumping to catch a frisbee

1674612291_7154c5ab61.jpg₂₁ 2945036454_280fa5b29f.jpg

catch a frisbee g_o h_f g_f c g_i tanh x, h'_o IMAGE

a dog is jumping to

catch a frisbee g_o g_f c g_i tanh x, h'_o

a dog is jumping to

a dog is jumping to

2 24 2

catch a frisbee -jumps g_o g_f c g_i tanh a dog x, h'_o dog

a dog is jumping to

catch a frisbee. g_o h_f g_f c g_i tanh x, h'_o

3 25 3

a dog is jumping to

3 26 4

catch a frisbee g_o h_f g_f c g_i tanh a dog jumps x, h'_o jumps

a dog is jumping to

4 27 5

a dog is jumping to

5 28 6

a dog is jumping to

catch a frisbee. g_o g_f c g_i tanh a dog is jumping to catch x, h'_o

6 29 7

a dog is jumping to

catch a frisbee. frisbee g_o h_f g_f ctanh a dog is jumping to catch a x, h'_o

7 30 8

catch a frisbee g_o g_f c g_i tanh a dog jumps to catch a frisbe x, h'_o

a dog is jumping to

catch a frisbee

a dog is jumping to catch a frisbee.

1626754053_81126b67b6.jpg₃₂ 2945036454_280fa5b29f.jpg

 g_o

 g_i

tanh

 x, h'_o

catch a frisbee.

 g_f

33

 g_o

 g_i

tanh

 x, h'_o

catch a frisbee.

a dog is jumping to catch a frisbee.

34

 g_f

catch a frisbee.

a dog is jumping to catch a frisbee.

catch a frisbee. g_o g_f g_i tanh a black x, h'_o

a dog is jumping to catch a frisbee.

catch a frisbee. g_o g_f c g_i tanh a black dog x, h'_o

a dog is jumping to

4 37 3

catch a frisbee. jumping g_o g_f g_i tanh a black dog is x, h'_o

a dog is jumping to catch a frisbee.

5 38 4

catch a frisbee.

 g_o g_f c g_i tanh a black dog is jumping x, h'_o jumping

a dog is jumping to <u>catch a frisbee .</u>

catch a frisbee.

a dog is jumping to catch a frisbee.

catch a frisbee. g_i tanh a black dog is jumping to cat x, h'_o

a dog is jumping to

8 41 7

catch a frisbee.

a dog is jumping to catch a frisbee.

catch a frisbee. g_f tanh a black dog is jumping to catch a x, h'_o

a dog is jumping to catch a frisbee.

10

Why all dogs end with "frisbee"?

Count last word in training sentences with "dog" and "frisbee":

86 frisbee	6 yard	4 it	2 other
30 mouth	6 disc	4 ground	2 mouths
15 snow	6 air	4 fence	2 man
15 grass	5 watches	4 beach	2 legs
11 field	5 midair	3 road	2 hand
11 dog	5 background	3 object	2 dogs
8 toy	4 watch	3 boat	1 underfoot
7 water	4 park	3 ball	1

a man in a blue shirt is a man in a blue shirt is riding a bike on a dirt track. riding a bike on a ramp

2891617125_f939f604c7.jpg 45 3640422448_a0f42e4559.jpg

46

 g_f

a man in a blue shirt is a man in a blue shirt is riding a bike on a dirt track. riding a bike on a ramp.

 g_o g_f g_i tanh x, h'_o

 g_o h_f g_f g_i tanh x, h'_o

a man in a blue shirt is

riding a bike on a dirt track. riding a bike on a ramp. g_o h_f g_f g_i tanh x, h'_o

 g_o h_f g_f g_i tanh x, h'_o

a man in a blue shirt is

riding a bike on a dirt track. riding a bike on a ramp. g_o g_f g_i tanh x, h'_o

 g_o h_f g_f g_i tanh x, h'_o

riding a bike on a dirt track. riding a bike on a ramp. g_o g_f g_i tanh a man in x, h'_o

 g_o g_f g_i tanh x, h'_o

riding a bike on a dirt track. riding a bike on a ramp. g_o h_f g_f g_i tanh a man in a x, h'_o

 g_o h_f g_f g_i tanh

 x, h'_o

riding a bike on a dirt track. riding a bike on a ramp. g_o g_f tanh a man in a blue x, h'_o

 g_o h_f g_f g_i tanh a man in a blue x, h'_o

riding a bike on a dirt track. riding a bike on a ramp. g_o g_f tanh a man in a blue shirt x, h'_o

a man in a blue shirt is a man in a blue shirt is

riding a bike on a dirt track. riding a bike on a ramp riding g_o g_f tanh a man in a blue shirt is x, h'_o

 g_o h_f g_f g_i tanh a man in a blue shirt is x, h'_o

riding a bike on a dirt track. riding a bike on a ramp g_o g_f tanh a man in a blue shirt is ridin x, h'_o riding

 g_o h_f g_f g_i tanh a man in a blue shirt is riding x, h'_o riding

 g_o h_f g_i tanh a man in a blue shirt is riding x, h'_o

riding a bike on a dirt track. riding a bike on a ramp. g_o g_f tanh a man in a blue shirt is riding a x, h'_o

a man in a blue shirt is a man in a blue shirt is

riding a bike on a dirt track. riding a bike on a ramp. g_f tanh a man in a blue shirt is riding a b x, h'_o

 g_o g_i tanh a man in a blue shirt is riding a bi x, h'_o

riding a bike on a dirt track. riding a bike on a ramp. g_f tanh a man in a blue shirt is riding a bike x, h'_o

 g_o h_f g_i tanh a man in a blue shirt is riding a bik x, h'_o

riding a bike on a dirt track. riding a bike on a ramp. g_f tanh a man in a blue shirt is riding a bike on x, h'_o

 g_o h_f g_i tanh a man in a blue shirt is riding a bike of x, h'_o

Generating descriptions for the regional images

1

Dataset of images and sentence descriptions

training image

"A Tabby cat is leaning on a wooden table, with one paw on a laser mouse and the other on a black laptop" 2

Inferred correspondences

training image

"Tabby cat is leaning"

"laser mouse"

"paw"

"black laptop"

"wooden table"

Generative model

test image

"office telephone"

"shiny laptop"

►"Tabby cat is sleeping"

"wooden office desk"

"messy pile of documents"

Alignment is here

Alignment model

<u>Algorithm</u>

<u>Algorithm</u>

image embedding

word

embedding

$$v = W_m[CNN_{\theta_c}(I_b)] + b_m$$

$$x_{t} = W_{w} \mathbb{I}_{t}$$

$$e_{t} = f(W_{e}x_{t} + b_{e})$$

$$h_{t}^{f} = f(e_{t} + W_{f}h_{t-1}^{f} + b_{f})$$

$$h_{t}^{b} = f(e_{t} + W_{b}h_{t+1}^{b} + b_{b})$$

$$s_{t} = f(W_{d}(h_{t}^{f} + h_{t}^{b}) + b_{d}).$$

Algorithm

$$v = W_m[CNN_{\theta_c}(I_b)] + b_m$$

A ranking model that makes similarity scores of matching pairs higher than those of mis-matches.

<u>Algorithm</u>

Encourage neighbour words to align to the same region.

image embedding

$$v = W_m[CNN_{\theta_c}(I_b)] + b_m$$

$$x_{t} = W_{w} \mathbb{I}_{t}$$

$$e_{t} = f(W_{e} x_{t} + b_{e})$$

$$h_{t}^{f} = f(e_{t} + W_{f} h_{t-1}^{f} + b_{f})$$

$$h_{t}^{b} = f(e_{t} + W_{b} h_{t+1}^{b} + b_{b})$$

$$s_{t} = f(W_{d} (h_{t}^{f} + h_{t}^{b}) + b_{d}).$$

word embedding

$$\mathcal{C}(\theta) = \sum_{k} \Big[\underbrace{\sum_{l} max(0, S_{kl} - S_{kk} + 1)}_{\text{rank images}} \\ + \underbrace{\sum_{l} max(0, S_{lk} - S_{kk} + 1)}_{\text{rank sentences}} \Big].$$
 alignment objective

$$\begin{split} E(\mathbf{a}) &= \sum_{j=1...N} \psi_j^U(a_j) + \sum_{j=1...N-1} \psi_j^B(a_j, a_{j+1}) \\ \psi_j^U(a_j = t) &= v_i^T s_t \\ \psi_j^B(a_j, a_{j+1}) &= \beta \mathbb{1}[a_j = a_{j+1}]. \end{split} \qquad \begin{array}{c} \mathsf{MRF in} \\ \mathsf{decoding} \\ \end{split}$$

down street
helmet
riding down street
police officer
man
man in red shirt
motorcycles
group
group of people
motorcycle
dirt bike
two motorcycles
red

man yellow

young man group

kitchen

bottles of wine

wine bottles

glasses

bottle

table with wine glasses

woman

people

glass vases

these different types

- chocolate cake - glass of wine

Evaluation - Alignment

Image annotation

Image search

test sentence: w1 w2 w3 ... wn

Evaluation - Alignment

	Image Annotation				Image Search						
Model	R@1	R@5	R@10	Med r	R@1	R@5	R@10	Med r			
Flickr8K											
DeViSE (Frome et al. [10])	4.5	18.1	29.2	26	6.7	21.9	32.7	25			
SDT-RNN (Socher et al. [42])	9.6	29.8	41.1	16	8.9	29.8	41.1	16			
Kiros et al. [19]	13.5	36.2	45.7	13	10.4	31.0	43.7	14			
Mao et al. [31]	14.5	37.2	48.5	11	11.5	31.0	42.4	15			
DeFrag (Karpathy et al. [18])	12.6	32.9	44.0	14	9.7	29.6	42.5	15			
Our implementation of DeFrag [18]	13.8	35.8	48.2	10.4	9.5	28.2	40.3	15.6			
Our model: DepTree edges	14.8	37.9	50.0	9.4	11.6	31.4	43.8	13.2			
Our model: BRNN	16.5	40.6	54.2	7.6	11.8	32.1	44.7	12.4			
Flickr30K											
DeViSE (Frome et al. [10])	4.5	18.1	29.2	26	6.7	21.9	32.7	25			
SDT-RNN (Socher et al. [42])	9.6	29.8	41.1	16	8.9	29.8	41.1	16			
Kiros et al. [19]	14.8	39.2	50.9	10	11.8	34.0	46.3	13			
Mao et al. [31]	18.4	40.2	50.9	10	12.6	31.2	41.5	16			
DeFrag (Karpathy et al. [18])	14.2	37.7	51.3	10	10.2	30.8	44.2	14			
Our implementation of DeFrag [18]	19.2	44.5	58.0	6.0	12.9	35.4	47.5	10.8			
Our model: DepTree edges	20.0	46.6	59.4	5.4	15.0	36.5	48.2	10.4			
Our model: BRNN	22.2	48.2	61.4	4.8	15.2	37.7	50.5	9.2			
	MSCOCO										
Our model: 1K test images	29.4	62.0	75.9	2.5	20.9	52.8	69.2	4.0			
Our model: 5K test images	11.8	32.5	45.4	12.2	8.9	24.9	36.3	19.5			

Evaluation - Translation

	Flickr8K			Flickr30K				MSCOCO				
Method of generating text	PPL	B-1	B-2	B-3	PPL	B-1	B-2	B-3	PPL	B-1	B-2	B-3
4 sentence references												
Human agreement	-	0.63	0.40	0.21	_	0.69	0.45	0.23	_	0.63	0.41	0.22
Ranking: Nearest Neighbor	-	0.29	0.11	0.03	-	0.27	0.08	0.02	-	0.32	0.11	0.03
Generating: RNN	_	0.42	0.19	0.06	-	0.45	0.20	0.06	_	0.50	0.25	0.12
Generating: RNN (OxfordNet CNN [40])	_	0.49	0.28	0.11	-	0.49	0.28	0.12	_	0.54	0.34	0.16
		5	sentenc	e refere	ences							
Generating: RNN	-	0.45	0.21	0.09	_	0.47	0.21	0.09	-	0.53	0.28	0.15
Mao et al. [31]	24.39	0.58	0.28	0.23	35.11	0.55	0.24	0.20	_	-	-	-
Generating: RNN (OxfordNet CNN [40])	22.66	0.51	0.31	0.12	21.20	0.50	0.30	0.15	19.64	0.57	0.37	0.19

	Flickr8K					Flicki	:30K		MSCOCO			
Method of generating text	PPL	B-1	B-2	B-3	PPL	B-1	B-2	B-3	PPL	B-1	B-2	B-3
Vanilla RNN	22.66	0.51	0.31	0.12	21.20	0.50	0.30	0.15	19.64	0.57	0.37	0.19
LSTM	15.47	0.53	0.34	0.17	18.92	0.52	0.32	0.15	13.96	0.60	0.40	0.21

Method of generating text	B-1	B-2	B-3
Human agreement	0.54	0.33	0.16
Ranking: Nearest Neighbor	0.14	0.03	0.07
Generating: Full frame model	0.12	0.03	0.01
Generating: Region level model	0.17	0.05	0.01

Reference

- Karpathy, A. & Fei-Fei, L., 2014. Deep Visual-Semantic Alignments for Generating Image Descriptions. arXiv.org, cs.CV.
- Vinyals, O. et al., 2014. Show and Tell: A Neural Image Caption Generator. arXiv.org, cs.CV.